

POSITIVE DISPLACEMENT BLOWERS & VACUUM PUMPS

Whats we do?

ASDEE UDYOG has develop JUPITER brand roots blowers for pressure and vacuum solutions since 1971 with manufacturing facilities in Ahmedabad, gujarat (india).

Weare leader in positive displacement blower (rotary lobe blowers), vacuum booster pump and CEMENT & FLY ASH FEEDING SYSTEM, for different industries, we are committed to playing a vital role by saving energy and protecting the environment.

The Company has 17000 sq.ft. of factory area. Using modern machining systems and state-of-the-art production processes, our product range is constantly evolving.

We enhance and add value to our customers, taking on challenges, innovating and working together.

Our Vision

Mission

- Focused approach to customers' needs and businessopportunities available in global market.
- Provide pressure & vacuum systems that allows our customers to compete globally and grow effectively in today's competitive world.
- Meet our quality objectives in each area of operation and stay committed to monitoring our performance and continually improve the effectiveness of our quality management system.

Vision

To become top solution provider by being a prominent and trusted brand for:

- Positive Displacement Blowers in the world
- Low Pressure Compressors in India

Quality Objectives

- Timely and effective customer support & services
- Delivery on time, delivery in full, of defect free products
- Achieving and sustaining superior levels of performance in all operations

we always your vacuum and pressure trusted partner

Blower Application in Different Segment

- burner

 Kiln burner

 Packing plant

 Captive power plan

 FGD (Dry)

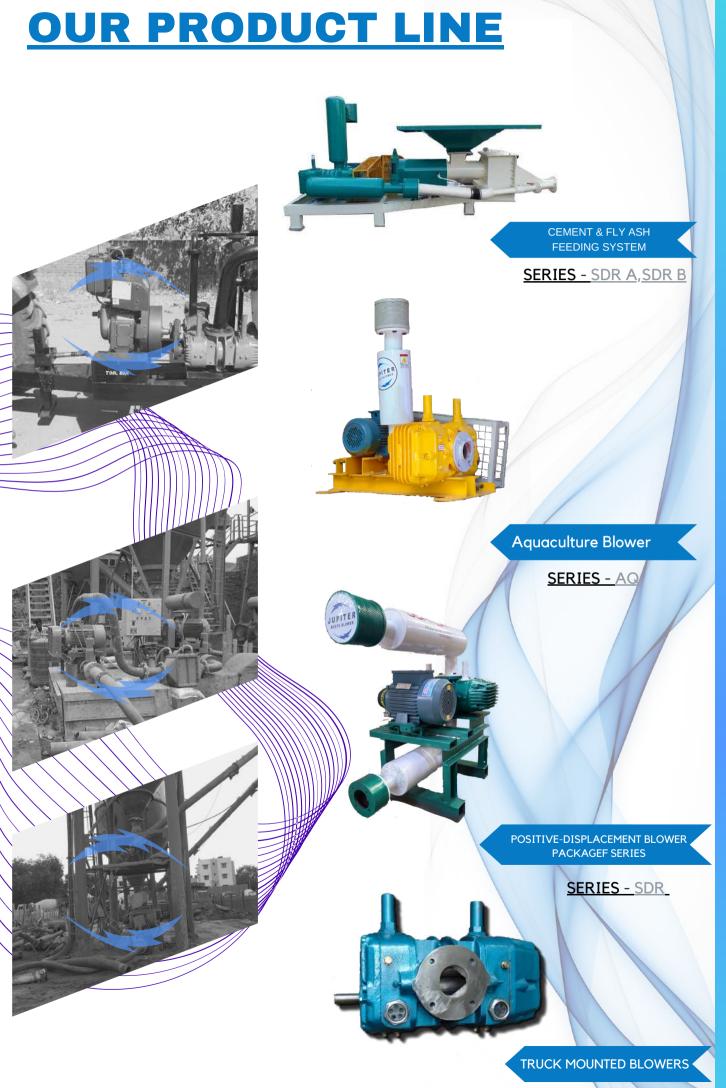
 Truck Unloading
- FGD (Wet)

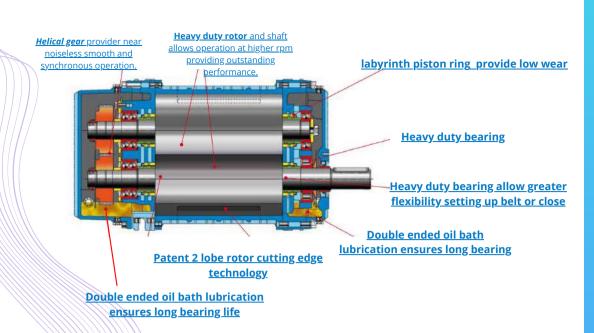
- Bio-Gas

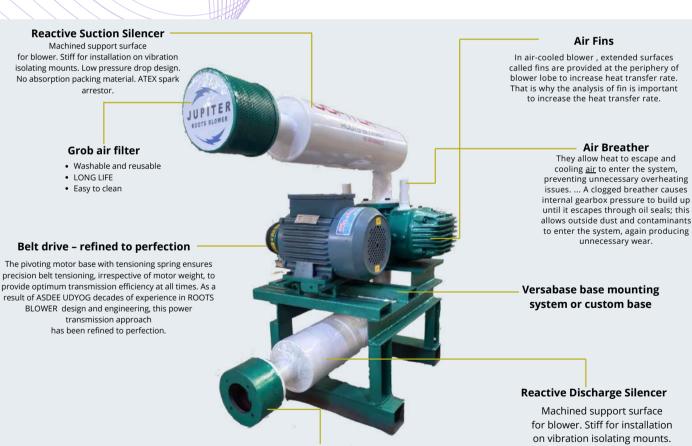
- Lime cooling
 Gas Booster
 COG
 FGD (Dry)
 Truck Unloading
 Blower
 Injection Blower
 FGD (Wet)

- FGD (Wet)

- Conveying
 Blower for
 Milling Section
 Blower for
 Atta Section
 Packing
 Section
 Hammer




RELIABL QUIET PERFORMANCE EFFICIENJ


Mfg.by ASDEE UDYOG

SERIES - SDR

DESIGN & TECHNICAL FEATURES TWIN-LOBE BLOWERS.

The accessories that make the difference.

Non Return Valve

ASDEE UDYOG used special designed Flap type Non-return Valve to protect the machine from back pressure. for blower. Stiff for installation on vibration isolating mounts.
Low pressure drop design.
No absorption packing material.

ATEX spark arrestor.

JUPITER ROOTS BLOWER SDR -Series

100% OILL FREE

> HEAVY DUTY

Accessories

Silencers

Safty Valve

Non Return Valve

Bearings

Rotors (Impellers)

Gears

Features

- Operate in Overpressure up to 1000 mbar
- · Relatively low vibration and noise levels
- 100% oil free air delivery
- Operate in Vacuum up to 500 mbar
- · Rated for continuous duty operation
- Dynamically balanced rotary parts ensure vibration free running.
- · Alloy steel hardened and ground timing gears
- Anti-friction bearings (spherical roller bearing, Double roller ball bearing)
- · Rotary oil sealings , Piston ring
- Improved base frame design with built-in discharge silencer for low noise operation
- · Direct coupled or V Belt driven

JUPITER ROOTS BLOWER

PERFORMANCE DATA

SDR - 10

△P-M	.Bar	100		200		300		400		500		600		700		800		900		1000	
SP	EED	M3/Hr	кw	M3/Hr	кw	M3/Hr	KW	M3/Hr	KW	M3/Hr	KW	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	ĸw
Ng	Nm	WISTHI	KVV	IVI3/HI	KVV	W S/ FI	NVV.	WIS/FII	ZVV	IVI3/HI	KVV	MOTH	KVV	IVI 3/ FII	KVV	IVI3/TII	KVV	MISTRI	ZVV	IVI3/HI	KVV
1195	1450	78	0.32	62	0.65	50	0.97	39	1.29	30	1.61										
1450	1450	103	0.39	87	0.78	76	1.17	65	1.56	56	1.95	48	2.34								
1610	1450	120	0.44	104	0.87	92	1.3	81	1.73	72	2.17	65	2.6								
1935	1450	153	0.52	137	1.04	124	1.56	114	2.08	105	2.6	97	3.12	89	3.64						
2390	2900	199	0.65	184	1.29	171	1.93	161	2.57	152	3.22	144	3.86	136	4.5	130	5.15	123	5.79		
2550	2900	216	0.69	200	1.37	187	2.06	177	2.74	167	3.43	160	4.11	152	4.8	146	5.49	140	6.17		
2900	2900	251	0.78	235	1.56	223	2.34	212	3.12	203	3.9	196	4.68	188	5.46	181	6.24	175	7.02	169	7.8
3220	2900	284	0.87	268	1.73	255	2.6	245	3.47	237	4.33	228	5.2	220	6.06	214	6.93	208	7.8	202	8.66
3625	2900	324	0.98	309	1.95	296	2.93	286	3.9	278	4.87	269	5.85	261	6.82	255	7.8	249	8.77	243	9.74
4390	2900	402	1.18	387	2.36	375	3.54	363	4.72	355	5.91	347	7.09	340	8.27	333	9.45	328	10.7	320	11.8

SDR - 12

AP-M	.Bar	100		200		300		400		500		600		700		800		900		1000	
SP	EED	NAD /Us	кw	8.43 /U-	кw	0.47/14-	KW	BA2/U-	кw	242/11-	кw	NAT // 1-	V\A/	N # 2 / Law	WAN	NAT /11-	ĸw	N 12 / LL	KW	112/11-	ĸw
Ng	Nm	M3/Hr	KW	M3/Hr	KW	M3/Hr	KVV	M3/Hr	KW	M3/Hr	KVV	M3/Hr	KW	M3/Hr	KW	M3/Hr	KVV	M3/Hr	KVV	M3/Hr	KVV
965	1450	105	0.42	83	0.84	67	1.26	54	1.68	42	2.1	31	2.51								
1275	1450	154	0.56	134	1.11	118	1.66	103	2.22	93	2.77	82	3.32								
1450	1450	183	0.63	162	1.26	146	1.89	133	2.52	121	3.15	110	3.78	100	4.41						
1810	1450	241	0.79	221	1.57	206	2.36	191	3.14	179	3.93	169	4.71	158	5.5	150	6.28	142	7.07		
2125	2900	293	0.93	273	1.85	258	2.77	243	3.69	231	4.62	221	5.54	210	6.46	202	7.38	194	8.31		
2390	2900	336	1.04	315	2.08	300	3.11	286	4.15	274	5.19	264	6.23	253	7.26	245	8.3	237	9.34		
2730	2900	391	1.19	372	2.37	356	3.56	341	4.74	330	5.93	320	7.11	309	8.3	300	9.48	292	10.7	284	11.9
3220	2900	471	1.4	451	2.8	436	4.19	420	5.59	409	6.99	400	8.39	388	9.78	380	11.2	372	12.6	363	14
3625	2900	537	1.57	516	3.15	502	4.72	486	6.29	475	7.86	465	9.43	454	11	446	12.6	438	14.2	428	15.7
4135	2900	620	1.8	600	3.59	585	5.38	569	7.18	559	8.97	550	10.8	538	12.6	529	14.4	522	16.2	512	18

SDR - 14

∆ P – M	.Bar	100		200		300		400		500		600		700		800		900		1000	
SP	EED	M3/Hr	кw	M3/Hr	кw	M3/Hr	KW	M3/Hr	кw	M3/Hr	кw	M3/Hr	ĸw	M3/Hr	KW	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	ĸw
Ng	Nm	IMIS/ITI	KVV	Wisyni	KVV	MISKELL	N.VV	WIS/HI	NAA	IVIS/FII	KVV	IVIS/III	NVV	IVIS/ HI	NVV	IVI3/TII	NVV	IM 27 FII	KVV	IVI3/III	KVV
965	1450	155	0.57	131	1.14	111	1.17	95	2.28	81	2.85	68	3.42								
1195	1450	206	0.71	181	1.41	163	2.12	147	2.83	132	3.53	119	4.24	107	4.94						
1450	1450	263	0.86	239	1.71	220	2.57	203	3.42	189	4.28	176	5.14	164	5.99	153	6.85				
1810	1450	343	1.07	319	2.14	300	3.21	282	4.27	269	5.34	256	6.41	244	7.48	233	8.54	223	9.61		
2125	2900	413	1.26	389	2.51	370	3.77	353	5.02	339	6.28	327	7.53	314	8.79	303	10.1	293	11.3	282	12.6
2390	2900	472	1.41	448	2.82	430	4.23	412	5.64	399	7.06	386	8.47	373	9.88	362	11.3	353	12.7	342	14.1
2730	2900	548	1.61	524	3.23	505	4.84	487	6.45	474	8.06	462	9.67	448	11.3	438	12.9	428	14.5	417	16.1
3220	2900	657	1.9	632	3.8	615	5.7	596	7.6	583	9.5	571	11.4	557	13.3	546	15.2	538	17.1	526	19
3625	2900	745	2.14	721	4.28	704	6.41	686	8.55	672	10.7	660	12.9	646	15	636	17.1	628	19.3	614	21.4
4135	2900	859	2.44	836	4.88	818	7.32	799	9.76	786	12.2	775	14.7	760	17.1	751	19.5	741	22	729	24.4

SDR - 16

∆ P – M	l.Bar	100		200		300		400		500		600		700		800		900		1000	
SP	PEED	M3/Hr	ĸw	M3/Hr	KW	M3/Hr	ĸw	M3/Hr	кw	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	кw
Ng	Nm	M3/H	KVV	IVI3/HF	KVV	IVI3/HE	KVV	M3/HP	KVV	IVI3/HE	KW	IVI3/HI	KVV	M3/HF	KVV	IVI3/HF	KVV	IVI3/HF	KVV	IVIS/HE	KVV
850	1450	217	0.78	185	1.55	160	2.32	138	3.1	120	3.87	103	4.65								
1195	1450	335	1.09	303	2.18	279	3.27	257	4.36	239	5.45	222	6.54	205	7.63	191	8.72				
1450	1450	423	1.32	391	2.65	367	3.97	344	5.29	326	6.61	309	7.93	292	9.25	279	10.6	265	11.9		
1810	1450	545	1.65	514	3.3	490	4.95	468	6.6	449	8.25	433	9.9	416	11.6	402	13.2	388	14.9	374	16.5
2125	2900	654	1.94	623	3.88	589	5.82	576	7.76	558	9.7	542	11.7	525	13.6	511	15.5	498	17.5	483	19.4
2390	2900	745	2.18	714	4.36	690	6.54	666	8.72	649	10.9	633	13.1	614	15.3	602	17.5	589	19.6	573	21.8
2550	2900	799	2.33	768	4.65	744	6.97	721	9.3	703	11.6	687	14	669	16.3	656	18.6	643	20.9	627	23.3
2730	2900	862	2.49	832	4.98	807	7.47	784	9.96	766	12.5	751	15	732	17.5	718	19.9	705	22.4	690	24.9
2900	2900	920	2.65	889	5.29	866	7.93	841	10.6	824	13.2	808	15.9	789	18.5	777	21.2	764	23.8	748	26.5
3625	2900	1167	3.3	1137	6.61	1114	9.91	1089	13.2	1072	16.5	1057	19.8	1037	23.1	1025	26.4	1013	29.7	996	33

S			

∆ P – M	.Bar	100		200		300		400		500		600		700		800		900		1000	
SP	EED	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	KW	M3/Hr	KW	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	KW
Ng	Nm	(MS/III)		1415/111		1413/111		WiS/Til	10.00	1415/111		1015/11		103/111	12.00	NI SYTH	1000	1113/111	K.	1015/111	1,11
817	1450	337	1.14	296	2.27	264	3.4	235	4.55	210	5.68	187	6.84	165	7.95						
965	1450	415	1.34	374	2.68	342	4.03	313	5.37	287	6.72	265	8.06	243	9.39	223	10.7				
1078	1450	474	1.5	433	3	401	4.5	372	5.91	347	7.5	325	9	302	10.5	282	12				
1230	1450	554	1.71	513	3.42	481	5.12	451	6.84	427	8.55	405	10.3	382	12	362	13.7	344	15.4		
1375	1450	630	1.91	590	3.82	557	5.75	527	7.65	503	9.55	480	112	458	13.4	438	15.3	421	17.2		
1825	1450	866	2.54	825	5.07	794	7.6	763	10.2	739	12.7	717	15.2	693	17.8	675	20.3	657	22.8	637	25.4
2203	2900	1064	3.06	1024	6.12	993	9.17	960	12.3	937	15.3	916	18.4	892	21.4	874	24.5	856	27.5	834	30.6
2457	2900	1197	3.41	1157	6.82	1126	10.3	1094	13.7	1070	17.1	1050	20.5	1024	23.9	1007	27.3	989	30.7	968	34.1
2590	2900	1267	3.6	1227	7.19	1197	10.8	1163	14.4	1140	18	1120	21.6	1094	25.2	1077	28.8	1059	32.4	1037	36
3053	2900	1509	4.24	1470	8.5	1440	12.7	1406	17	1383	21.2	1363	25.5	1337	29.7	1320	33.9	1303	38.2	1281	42.4

SDR - 22

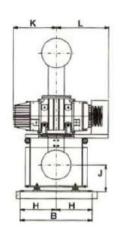
∆ P – M	.Bar	100		200		300		400		500		600		700		800		900		1000	
SP	EED	M3/Hr	ĸw	M3/Hr	KW	M3/Hr	ĸw	M3/Hr	кw	M3/Hr	кw	M3/Hr	ĸw	M3/Hr	кw	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	KW
Ng	Nm	MS/FI	KVV	IVI3/ FI	KVV	IVI3/TIL	KVV	IVI3/TII	KVV	IVI3/HI	NVV	W/S/FII	KVV	IVI3/TIL	KVV	IVI3/III	KVV	IVI3/HI	KVV	WIS/FII	KVV
765	980	547	1.76	490	3.52	446	5.28	405	7.02	370	8.78	338	10.6	306	12.3						
930	980	690	2.14	634	4.29	590	6.4	548	8.54	513	10.7	481	12.8	450	15	421	17.1				
1095	980	832	2.51	777	5.05	733	7.55	691	10.1	657	12.6	624	15.1	592	17.6	565	20.1				
1165	1450	893	2.68	838	5.35	793	8.03	751	10.7	717	13.4	686	16.1	653	18.7	625	21.4	599	24.1		
1300	1450	1010	2.98	955	6	911	8.95	868	12	834	14.9	803	17.9	770	20.9	742	23.9	716	26.9	688	29.8
1535	1450	1213	3.52	1159	7.05	1114	10.6	1072	14.1	1038	17.6	1007	21.2	973	24.7	946	28.2	921	31.7	892	35.2
1720	1450	1373	3.95	1319	7.9	1276	11.9	1231	15.8	1199	19.8	1166	23.8	1133	27.6	1107	31.6	1082	35.5	1052	39.5
2035	2850	1646	4.67	1592	9.35	1549	14	1504	18.7	1471	23.4	1441	28	1406	32.7	1380	37.4	1356	42	1325	46.7
2165	2850	1758	4.97	1705	9.95	1662	14.9	1617	19.9	1584	24.9	1555	29.8	1519	34.8	1493	39.8	1468	44.7	1437	49.7
2545	2850	2087	5.84	2035	11.8	1992	17.5	1946	23.4	1914	29.2	1885	35.1	1848	40.9	1822	46.7	1798	52.6	1766	58.4

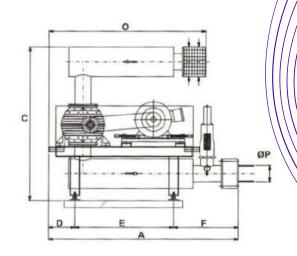
4 P – M	.Bar	100		200		300		400		500		600		700		800		900	
SP	EED	M3/Hr	KW	M3/Hr	KW	M3/Hr	ĸw	M3/Hr	кw	M3/Hr	кw	M3/Hr	ĸw	M3/Hr	KW	M3/Hr	кw	M3/Hr	ĸw
Ng	Nm	IVIS/TIF	KVV	IVIS/TII	KVV	IVI5/ITI	KVV	IVI5/ITI	KVV	IVIS/FII	KVV	IVIS/ ITI	NVV	IVIS/TIT	KVV	IVI3/TII	NVV	IVIS/ III	KVV
980	965	1104	3.58	1034	7.16	979	1080	931	14.3	889	17.9	850	21.5	814	25.1	781	28.7	749	32.2
1098	1450	1250	4	1181	8	1126	12	1078	16	1036	20	997	24	961	28	927	32	895	36
1230	1450	1423	4.49	1353	8.99	1298	13.5	1250	18	1208	2250	1169	27	1133	31.5	1100	36	1068	40.5
1375	1450	1608	5.02	1538	10.1	1483	15.1	1435	20.1	1393	25.1	1354	30.2	1318	35.2	1285	40.2	1250	45.2
1535	1450	1812	5.61	1742	11.2	1687	16.8	1640	22.5	1597	28.1	1559	33.7	1522	39.3	1489	44.9	1457	50.5
1720	1450	2048	6.28	1978	12.6	1923	18.9	1876	25.2	1833	31.4	1795	37.7	1759	44	1725	50.3	1693	56.6

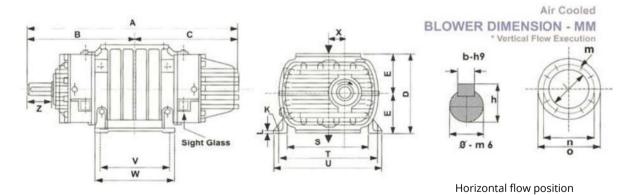
SDR - 30

∆ P – M	.Bar	100		200		300		400		500		600		700		800		900	
SP	EED	M3/Hr	KW	M3/Hr	ĸw	M3/Hr	ĸw	M3/Hr	кw	M3/Hr	кw	M3/Hr	KW	M3/Hr	кw	M3/Hr	ĸw	M3/Hr	ĸw
Ng	Nm	IVI3/HI	KVV	MISTRI	KVV	IVI3/HI	KVV	IVI 3/TII	Kuv	IV/3/HI	KVV	WiS/Til	KVV	IVI 3/TII	KVV	Wi5/Hi	KVV	WI3/III	KVV
716	965	1289	4.28	1199	8.56	1129	12.9	1069	17.1	1015	21.4	967	26.7	922	30	879	34.3		
807	965	1479	4.83	1389	9.65	1318	14.5	1258	19.3	1205	24.1	1156	29	1111	33.8	1069	38.6		
909	965	1691	5.44	1601	10.9	1530	16.3	1470	21.8	1417	27.2	1368	32.6	1323	38.1	1281	43.5	1241	48.9
1024	965	1930	6.12	1840	12.3	1770	18.4	1710	24.5	1656	30.6	1607	36.8	1562	42.9	1520	49	1481	55.1
1155	1450	2203	6.91	2113	13.8	2042	20.7	1982	27.6	1929	34.6	1880	41.5	1835	48.4	1793	55.3	1753	62.2
1287	1450	2478	7.7	2387	15.4	2317	23.1	2257	30.8	2203	38.5	2155	46.2	2110	53.9	2068	61.6	2028	69.3
1450	1450	2817	8.67	2727	17.4	2656	26	2896	34.7	2543	43.4	2494	52	2449	60.7	2407	69.4	2367	78

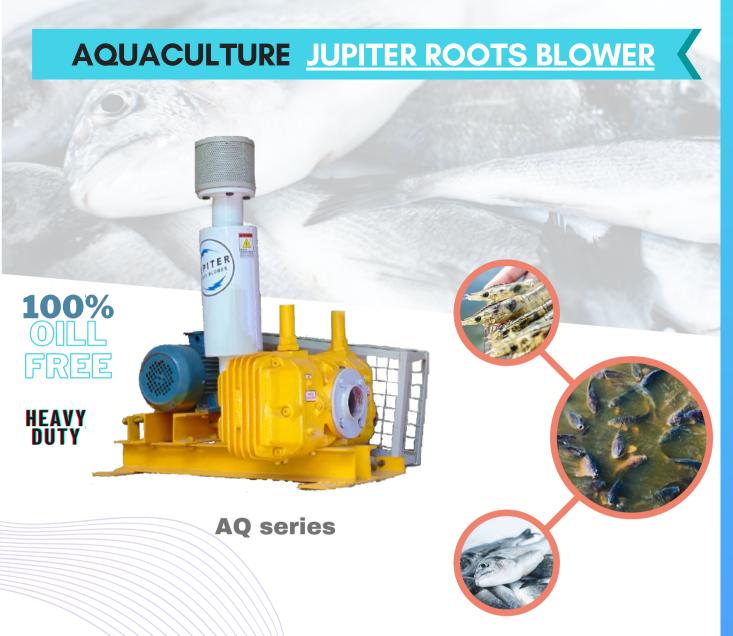
SDR - 36

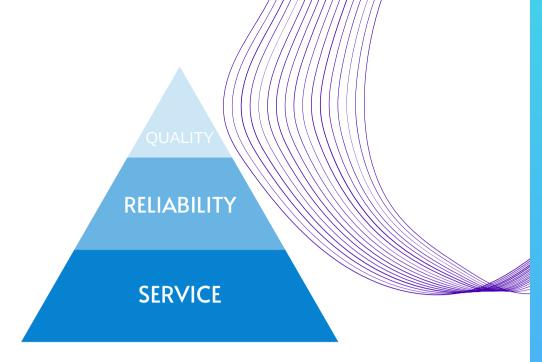

ΔP-M	.Bar	100		200		300		400		500		600		700		800		900	
SPI	EED	M3/Hr	кw	M3/Hr	KW	M3/Hr	ĸw	M3/Hr	кw	M3/Hr	кw	M3/Hr	ĸw	M3/Hr	кw	M3/Hr	ĸw	M3/Hr	ĸw
Ng	Nm	IVIS/III	KVV	IVIS/III	KVV	IVI3/HI	NVV	IVIS/TII	KVV	IVI5/FII	KVV	IVIS/ FII	NVV	IVI5/FII	NVV	IVI3/FII	NVV	IVI3/HI	NVV
716	965	2311	7.43	2181	14.9	2079	22.3	1992	29.7	1914	37.1	1843	44.6	1777	52	1716	59.4	1657	66.8
807	965	2640	8.37	2511	16.8	2409	25.1	2321	3.5	2244	41.9	2173	50.2	2107	58.6	2045	67	1987	75.3
909	965	3010	9.43	2880	18.9	2778	28.3	2691	37.7	2613	47.1	2542	56.6	2476	66	2414	75.4	2356	84.8
1024	965	3426	10.6	3296	21.3	3194	31.9	3107	42.5	3029	53.1	2958	63.7	2892	74.3	2831	84.9	2773	95.6
1155	1450	3900	12	3771	24	3669	35.9	3581	47.9	3504	59.9	2433	71.9	3367	83.8	3305	95.8	3247	109
1287	1450	4378	13.4	4249	26.7	4147	40.1	4059	53.4	3982	66.7	3911	80.1	3845	93.4	3783	108	3725	121
1450	1450	4969	15.1	4839	30.1	4737	45.1	4650	60.2	4572	75.2	4501	90.2	4435	106	4373	121	4315	136


Ng – BLOWER SPEED – RPM Δ P. Differential Pressure Pr. Milli Bar (100 M. Bar = 1020 mm WG)



JUPITER ROOTS BLOWER SDR -Series




MODEL	Α	В	С	D	E	F	Н	J	K	L	0	P
SDR -10	1350	490	865	120	780	450	245	185	262	330	1125	65
SDR-12	1565	560	1020	132	950	483	280	170	297	360	1330	80
SDR-14	1670	660	1115	150	950	570	330	225	317	395	1440	100
SDR-16	2010	720	1295	180	1140	690	360	270	352	450	1760	125
SDR19	2010	720	1325	180	1140	690	360	280	395	490	1760	150
SDR-22	2330	810	1510	220	1335	775	405	320	440	530	2050	175
SDR-26	2695	930	1765	240	1545	910	440	380	495	550	2365	200
SDR-30-1	2850	870	1840	147	1410	708	435	350	575	630	2535	200
SDR-30-2	3370	1000	2100	147	1835	803	500	385	575	630	3090	250
SDR36-1	3415	1010	2100	157	1788	815	505	385	640	730	3135	250
SDR-36-2	3785	1150	2440	157	1888	1085	575	445	640	730	3505	300

Model	Α	В	С	D	E	K	L	S	T	U	V	W	Х	Z	b	h	Ø	1	m	n	0
SDR - 10	514	252	262	224	112	14	12	200	280	310	130	170	36	60	8	28	25	70	4xM12	130	160
SDR - 12	602	305	297	264	132	14	15	230	310	350	160	200	42	80	8	33	30	80	4xM12	150	190
SDR - 14	644	327	317	280	140	18	15	260	340	380	180	220	48	80	10	38.5	35	100	4xM16	170	210
SDR - 16	707	352	355	320	160	18	15	270	360	400	210	250	54	80	10	41.5	38	125	8xM16	200	240
SDR - 19	820	425	395	360	180	18	18	310	400	440	250	300	63	110	12	45.5	42	150	8xM16	225	265
SDR - 22	905	465	440	400	200	18	20	370	470	510	300	350	74	110	14	52	48	175	8xM16	255	295
SDR - 26	1010	515	495	450	225	18	20	430	530	580	355	405	86	140	18	64	60	200	8xM16	280	320
SDR - 30	1165	590	575	500	250	20	20	500	620	670	390	440	100	140	20	74.5	70	250	12xM16	335	375
SDR - 36	1330	690	640	630	315	25	25	560	700	760	480	540	120	170	22	85	80	300	12xM20	395	440

MODEL	REC. MOTOR	DISPLACEMENT M3/HR	MAX. PR kPa	MIN. REC SIZE(mm)	
2AQ	2 HP	100	30kPa to 60 kPa	76 mm.	
3AQ	3 HP	200	30kPa to 80 kPa	76 mm.	
5AQ	5 HP	300	30kPa to 80 kPa	80 mm.	
7.5AQ	7.5 HP	570	30kPa to 80 kPa	100 mm.	
10AQ	10 HP	850	30kPa to 80 kPa	125 mm.	
15AQ	15 HP	1300	30kPa to 90 kPa	155 mm.	
20AQ	20 HP	1500	30kPa to 90 kPa	180 mm.	

We are committed to provide products and services to our customers that meet the requirement and exceeds their expectations by offering superior quality in terms of design, performance and metallurgy, timely delivery, prompt after-sales-service followed by genuine spare parts.

CONTACT US:

JUPITER ROOTS BLOWER

Mfg.by. **ASDEE UDYOG**

MFG.BY

ASDEE UDYOG

77/6, Phase- 1, Nr. Bank Of Baroda, GIDC Vatwa,Ahmedabad-382445, Gujarat, India

asdeeudyog@gmail.com

+917573858473 +919376104748